The Nature of Sheet Metal Forming

Sheet metal forming uses rolling, drawing, bending, and more...

(Source: demarco- Fotolia.com)

This method of metal forming produces parts from flat, rolled-out metal as strips or sheets, which are ready for further processing. The advantages of this process are both the high quantity and excellent quality results it produces, as well as the favorable product properties that come from the use of rolled out, semi-processed pieces. Sheet metal components are highly suited to lightweight constructions.

Different methods of sheet metal forming can be used depending on the geometry of the desired part. Based on the characteristics of each deformation process, the forming engineer can choose between: Deep drawing, ironing, punching, bending, stamping, and a variety of other manufacturing processes. Due to the geometric complexity of the parts being manufactured, additional multistage forming that combines different processes is frequently required within a phase of production. Therefore, production is usually achieved by automated transfer or stage pressing, or by progressive tools. Incremental production methods, such as roll forming, produce tubular parts in a continuous process; more complex revolving parts can be produced by spinning or flow-forming processes.

Sheet Metal Forming: Products and Target Industries

Clutch-plate (Source: ZF)

Today's product range includes not only structural components, transmission parts, and mechanical components of all kinds, but also cosmetics, food packaging and containers, pipes, and profiles. Sheet metal forming is used in the:

  • Automotive industry
  • Electrical industry
  • Packaging industry
  • Home appliance industry
  • And many others

Trends and Developments

Abb. Roll forming
Roll forming

A clear trend within product development is the increasing complexity and strength requirements of the components being produced. This trend alone has led to higher development costs for metal forming and manufacturing. Sheet metal forming has great potential for the manufacturing of lightweight components that were generally manufactured by forging in the past. This forming process can be combined to include, for example; Stamping and cross (lateral) flow processes as well as functions for adding elements such as gear teeth or threaded sleeves in the sheet metal parts.

Typical Challenges in Sheet Metal Forming

Abb.Simulating a hinge part formed in a progressive die
Simulating a hinge part formed in a progressive die

In the design of sheet metal forming processes, the selection of suitable machine/tool concepts is just as essential as the technological feasibility and product properties. With the help of Simufact.forming, the technological feasibility of the project at hand is evaluated using realistic predictions of the geometrical accuracy, cracking behavior , risk of cracking, and formability. The simulation results show the product’s characteristics such as wall thickness distribution, edge curvature, and the hardness distribution due to cold working.

Our Solution for Sheet Metal Forming

The Sheet Metal Forming Module in Simufact Forming

Abb. Hydraulic Sheet metal forming press.
Hydraulic Sheet metal forming press.

The Simufact Forming Sheet Metal Forming application module aids the simulation of forming parts from sheet-shaped primary materials. This module supports the manufacturing processes of pipes, profile parts, structural parts, engine and transmission housings, mechanical components, and many other products.

 

Take advantage of Simufact.forming for your sheet metal forming processes:

  • Shorter development times with fewer trial runs
  • Comprehensive process understanding
  • High process stability and quality
  • Predictions of component properties
  • Prediction of springback and residual stresses
  • Better machine utilization
  • Optimum coordination of the individual process steps
  • Less waste
  • Avoids formation of defects and cracks