Articles

Specialist Knowledge

Below is a selection of professional articles from technical periodicals and scientific publications - from and about Simufact - on the subjects of forming, welding and additive simulation.

 

Technical Articles

Result quality evaluation of Directed Energy Deposition Additive Manufacturing simulations with progressive simplification of transient heat-source motion

Result quality evaluation of Directed Energy Deposition Additive Manufacturing simulations with progressive simplification of transient heat-source motion

ScienceDirect
6 September 2022

View

Numerical simulation of shrinkage and deformation during sintering in metal binder jetting with experimental validation

Numerical simulation of shrinkage and deformation during sintering in metal binder jetting with experimental validation

Materials & Design
Volume 216, April 2022, 110490

View

Numerical modelling and experimental investigation of the Riv-Bonding process

Journal of Materials Processing Technology, Feb. 2021, Volume 288 (23,7 MB)

Authors:

Yunpeng Liu, Li Han, Huan Zhao, Xianping Liu

Download

Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures

Article published in "Finite Elements in Analysis and Design", Volume 84, July 2014, Pages 54–64

Authors:

M. Islam (a), A. Buijk (b), M. Rais-Rohani (a, c), K. Motoyama (a, c)

(a) Center for Advanced Vehicular Systems, Mississippi State University, MS 39762, USA
(b) Simufact-Americas LLC, Plymouth, MI 48170-4347, USA
(c) Department of Aerospace Engineering, Mississippi State University, MS 39762, USA

Vorschau Fachartikel With the increasing pressure on the industry to save material, engineers are forced to come up with incremental forming processes like Radial Forming and Flow Forming. These processes are characterized by the excellent workpiece properties of the formed zones, the great variety geometries in net shape quality. It seems that the two processes are similar, but a closer examination of the stress state shows differences. This paper deals with the different processes of radial forging and flow forming and their stress states. The simulation of these processes with FEM models, carried out with the software SIMUFACT, allows a view into the forming zone. The investigations give an overview about the difference of the material flow during the forming process. These views guide the way to a useful industrial application of Radial Forming and Flow Forming.

This article is available via

ScienceDirect

Modelling the section rolling process and microstructures of the rolling stock by latest simulation toolscess for reduced distortion in welded structures

DER KALIBREUR, July 2013, Magazine 74/2013 (3,3 MB)

Authors:

Dr. Ralph Bernhardt, Simufact Engineering GmbH
Dr. Franz-Dieter Philipp, Mannstaedt GmbH

Download

Aluminium Automotive Rivet Forming

Artikel FASTENER TECHNOLOGY INTERNATIONAL, August 2012 (1,5 MB)

Author:

Mike Walker, Omni-Lite Industries

Download

Study on the determination of optimal parameters for the simulation of the forming process of thick sheets

Article released on occasion of the 4ª Conferência Internacional de Conformação de Chapas / 1º BrDDRG (936,8 KB)

Porto Alegre, RS - Brazil, 8-10 Oct, 2014

Authors:

Ibson Ivan Harter, João Henrique Corrêa de Souza - Bruning Tecnometal Ltda, Brazil
Arjaan Buijk, Zach Pursell - Simufact-Americas LLC

Download

Die Life Optimization by numerical modelling with Simufact.forming

Article FOCUS, June 2013, Issue 2/2013 (951,6 KB)

Authors:

Dr. Gabriel Mc Bain - Simufact India Pvt. Ltd., Bangalore, India
Dr. Hendrik Schafstall - Simufact Engineering GmbH, Hamburg, Germany
Raman Gupta - Kadkraft Systems Pvt. Ltd., Chandigarh, India

 

Download

Innovative Simulations of Sheet Metal Forming Processes with Dominating Triaxiality

Article published on occasion of the IDDRG conference in Mumbai, India
November 25-29, 2012 (2,6 MB)

Authors:

Dr. Ingo Neubauer, Dr. Gabriel Mc Bain, Simufact Engineering GmbH

Download

Simulating Ring Rolling

Article published in FORGING magazine, July/August 2011 (1,7 MB)

Author:

Arjaan Buijk, Simufact Engineering 

A special module for ring-rolling simulation has matured and achieved acceptance by the industry, and new developments lie ahead.

 

Download

Simulating the effects of billet heating Thermprof

Article published in FORGING magazine, January/February 2010 (1,2 MB)

ABP Induction and Simufact research, develop and present new technology for simulating the effects of billet heating
in the hot forging process.

Download

The same goal

Article published in the German professional magazine bbr September 2015. (2.520 kB)

 
Interview with CEO Michael Wohlmuth at Simufact's16th RoundTable Simulating Manufacuring in Marburg.

 

Download

How to prevent premature tool failure

This article has been released in the German professional magazine Wire 2/ 2016.

FEM simulation programs currently constitute a powerful and widely used instrument for the design of processing stages, the optimisation of material flows and forecasting of die wear. They are used as standard in many cold- and hot-forming plants for the design and configurations of dies. 

Author:

Mr. Gabriel Mc Bain, Simufact Engineering GmbH

Mr. Bernhard Toennesmann, Möhling GmbH & Co. KG

Download

Design, Control and Optimization of Process Chains

Bulk-metal forming processes contribute to the efficient, sustainable use of resources through their preceise design and the implementation of process combinations. The design of process chains is used to achieve targeted from material characteristics and is based on the premise of fast and flexible production - with a simultaneous reduction of costs. 

Article published in: FORGEmag, August 2016

Authors:

Dirk Klug, Schuler Pressen GmbH, Germany
Hendrik Schafstall, Simufact Engineering GmbH, Germany
Markus Bergmann, Fraunhofer IWU, Germany

Download

Additive Manufacturing -From Trial and Error to a True Revolution

Additive Manufacturing -From Trial and Error to a True Revolution

By Dominic Gallello, CEO of MSC Software

Download

Numerical simulation of the distortion in conventional laser and fluxless laser-plasma brazing of aluminum using Simufact.welding
Numerical simulation of the distortion in conventional laser and fluxless laser-plasma brazing of aluminum using Simufact.welding

Brazing is a common technology for joining of aluminum components. Besides conventional methods, laser brazing is about to be established as a standard brazing technology. It offers several advantages compared to welding, e.g. less thermal induced stresses and less rework of the seam surface.

Article published in: DVS Berichte, 9th. Int. Congress Aluminium Brazing

Download lecture papers

Author: 

Khazan P. (Hamburg / Germany), simufact engineering

Radel. T. (Bremen / Germany)

Woizeschke, P. (Bremen / Germany)

 

Download

Method for efficient determination of material properties for modelling aluminium welding processes
Thumbnail - Method for efficient determination

The trend in the automotive and aircraft industry is moving towards customized designs by using compound structures, which provide an enlarged potential for weight and cost savings. Particularly, thermal joined lightweight structures made of aluminium alloys are characterized by moderate material and processing costs.

Authors: B. Striewe, J. Seiderer, A. von Hehl, A. Repenning, P. Khazan and H. Schafstall

Article published in: Materials Science & Engineering Technology, Vol. 47 - No. 11 - November 2016, Wiley-VCH

Available for purchase via: Wiley Online Library

 

Mastering the challenges faced in joining of formed components of different materials

Mastering the challenges faced in joining of formed components of different materials

Authors: 

Vinand Arabale, Simufact Engineering - India

Dr. Ralph Bernhardt, Simufact Engineering GmbH

Article published in: TRB Technical Reference Bullentin, Symposium on International Automotive Technology 2017

Download

 

New Forming Software Offers Improved Operation & Covers Additional Processes

New Forming Software Offers Improved Operation & Covers Additional Processes

 

Author:
Volker Mensing, Simufact Engineering GmbH

Article published in: Wire & Cable Technology International / March 2017

Download

Virtual Process Layout for Serial Automotive Produktion

Article published in FORGING magazine, 08/2010 (2,0 MB)

Authors:

Jürgen Schüler, Neumayer Tekfor Group
Michael Wohlmuth, Simufact Engineering GmbH

 

Download

Welding simulation supports process understanding

Article published in the INTERNATIONAL SHEET METAL REVIEW
February 2012 (754,9 KB)

Welding simulation supports process understanding in sheet metal forming, says Dr. Hendrik Schafstall.

 

Download

Full Automatic Vertical Ring Rolling Mill (VRRM) for Rolling Rings With Profiled Cross Section

Article published on occasion of the 18th International Forgemasters Meeting in Pittsburgh, PA (USA), September 12-15, 2011 (1,3 MB)

Authors:

E. Oka, R. Higashi, T. Nomiyama, Mitsubishi Nagasaki Machinery Mfg. Co., Ltd., Japan

 

Download

Smart FE-based Tool Design in Cold Forging

Article published in "Advanced Materials Research", Volume 1018, September 2014, Pages 309-316

Authors:

Kolja Andreas, Christoph Kiener, Ulf Engel, Marion Merklein

Available for purchase via Scientific.Net


In cold forging, the forming tool takes a key role as it determines accuracy and efficiency of forming process. The present study focuses on the FE based analysis of the influence of die material, interference within prestressing and die splitting on the stress state in and the elastic behaviour of the forming tool. The results reveal a great influence of the workpiece material and the tool layout on the outcome of the forming process and the corresponding tool stresses.

Scientific.Net

Numerical and analytical investigation of steel–aluminum knurled interference fits: Joining process and load characteristics

Arcticle published in "Journal of Materials Processing Technology", Volume 219, May 2015, Pages 286–294

Authors:

Stefan Kleditzsch, Birgit Awiszus, Michael Lätzer, Erhard Leidich

Available for purchase via ScienceDirect

This paper describes a verified numerical investigation of the joining process and the axial strength of steel/aluminum knurled interference fits (100Cr6/AlMgSi1). Knurled interference fits have huge potential, as demonstrated by their increasing industrial use. However, as is characteristic of state of the art of knurled interference fits, current research lacks generality and makes comparison difficult between results, especially in relation to geometry-, material- and load-specific results. The work in this paper provides detailed investigation results for the influence of shaft-chamfer angle, hub-diameter ratio and geometric interference on knurled interference fits. This includes the type of joining process as well as joining force and axial strength. The joining process is essential for axial strength as well as for the transmission behavior of the connection. Finally, a new approach for the analytical computation of the joining force is presented.

ScienceDirect

Simulation of the cold forging process in fastener manufacture

Authors:

Umut İncea, Norm Fasteners Cooperation 35620 Çiğli, İzmir, Turkey
Mustafa Güdenb, Department of Mechanical Engineering and Dynamic Testing and Modeling Laboratory, Izmir Institute of Technology, Gülbahçe, Urla, Izmir, Turkey

This study reports two case studies of the cold forging simulation in fastener production.

Download

The Simulation Game

Article published in the INTERNATIONAL SHEET METAL REVIEW
November 2015 (413 KB)

Interview with CEO Michael Wohlmuth at the Blechexpo 2015

Download

Continuous Simulation

Article published in the German professional magazine BLECH June 2015 (3.810 kB)

Authors:

Dr.-Ing. Hendrik Schafstall (Managing Director and CTO - Simufact Engineering GmbH)
Dr.-Ing. Ingo Neubauer (Branch Manager Kassel - Simufact Engineering GmbH)
Dipl.-Ing. Julian Litzkow (Engineering Services - Simufact Engineering GmbH)

New potentials realized through process chain simulation using a crash box as an example

 

Download

Open-Die Forging Simulation

This article has been released in the FORGE magazine

Author:

Arjaan Buijk, Simufact Engineering

 

Download

Welding Simulation in Car Body Construction

Authors:

Raphael Thater, Philipp Wiethop and Michael Rethmeier

In this article, numerical welding simulation is used to deal with thhe challenge to find the optimal set-up within his large parameter space.

Download

Distortion Optimisation through Welding Simulation

Although they have already been in use for decades, welding processes are still some of the most mathematically complex methods that can be described. The reason for this is the localised heat input, with its very short heating and cooling periods and the related effects on the mechanical and metallurgical properties in the fusion zone. Thanks to the availability of high-power computers, numerical computer programs make it possible for the thermo-mechanical properties of welded structures to be reproduced in numerical simulations.

Article published in: ATZoffhighway worldwide, Issue 1/2017

Autors:
Dr.-Ing. Marius Gatzen, Simufact Engineering GmbH
Jochen Seifert, Edag Engineering Schweiz GmbH

Available for purchase via: Springer Professional

Order printed edition

"Simufact Welding 7" speeds up simulations of sheet metal structures

"Simufact from Hamburg/Germany, an MSC Software company, brings to market "Simufact Welding 7", the next version of its solution for the simulation of welding processes. Functional novelties such as solid-shell elements, simplified calculation methods for resistance spot welding processes and more flexible consideration of clamping concepts: "Simufact Welding 7" promises shorter processing times, more accurate results, and a more intuitive operational use of the software."

Article published in: Welding and Cutting 16 (2017) No. 5, p. 290

Download

Cutting simulations using a commercially available 2D/3D FEM software for forming.

Chip formation simulations require either sophisticated material based element removal or deactivation routines, or a powerful remeshing
procedure. Therefore the accuracy of all chip formation simulations significantly depends on the FEM-software as well as the material data.
Over the course of the past years, a few select commercial programs became the pre-eminent choice for chip formation simulations. In this
work, the software simufact.forming, which is not one of those few programs widely in use, has been employed for 2D and 3D chip formation
simulations. Orthogonal cutting experiments with AISI4140 were conducted and subsequently modeled, including the cutting edge

Article published in: 16th CIRP Conference on Modelling of Machining Operations, June 2017

Download

Designing, manufacturing and processing of Tailored Blanks in a sheet-bulk metal forming process

Sheet-bulk metal forming is an innovative method for the manufacturing of functional components by applying bulk metal forming processes or combined sheet and bulk metal forming processes to sheet metal. The investigated process combines deep drawing and upsetting. Occurring 2D and 3D stress and strain states lead to challenges regarding the material flow control during the forming process to ensure a high die filling and accurate part geometry.

Authors: Robert Schultea , Philipp Hildenbranda, Michael Lechnera and Marion Merkleina

Article published in: Procedia Manufacuring, Juli 2017

Download

 

Impact of Simulations on Cold-Forging Designs

The predictive value of process and product modeling by finite-element simulations has helped in the cold forging of fasteners. In this case, the punch used in a whell-hot forging was reconsidered and redesigned to eliminate the punch "sticking" in the hollow section of the forging.

Authors: Cenk Kilicasalan, Tayfur Yavuzbarut, Unmut Ince - Norm Civata San. ve Tic A.S. (Norm Fasteners Co.) Turkey

Article published in: FORGE magazine, August 2017

Download

 

Resource-efficient development of thermally highly resistant engine components of hybrid metal composites - experiments and numerical analysis

Resource-efficient development of thermally highly resistant engine components of hybrid metal composites - experiments and numerical analysis

Authors: Dirk Landgrebe, Lutz Krüger, Nadine Schubert, Eric Jentsch, Tim Lehnert

Article published in: Procedia Engineering, November 2017 

One remark in our own interest: With the release of Simufact Forming 15 users can simulate inductive heating.

Download

 

On the Cold Forging of 6082 H13 and T4 Aluminum Alloy Bushes

In this study, manufacturability of Ø23x36 aluminum bushes with EN AW 6082-AlSi1MgMn aluminum alloy was investigated. Two different pretreated EN AW 6082 alloys, H13 (strain-hardened) and T4 (solution annealing and naturally aged) were used in the present study and cold forging performance of the alloys was evaluated comparatively. Compression tests were carried out at different temperatures and strain rates to model the flow stress of the alloys.

Authors: Buğra Karahan, Umut İnce, Sezgin Yurtdaş, Emrah Kılınçdemir, Fuat Can Ağarer,Cenk Kılıçaslan

Article published in: Acedemic Platform, September 2017

Download

 

Numerical Investigation of the Oxide Scale Deformation Behaviour with Consideration of Carbon Content during Hot Forging

Due to increasing product requirements the numerical simulation has become a powerful tool for the effective and efficient design of individual process steps as well as entire process chains. In order to model hot forging processes with finite element based numerical methods realistic models are required which consider the detailed mathematical description of the material behaviour during the forging process, the surface phenomena at die and workpiece as well as machine kinematics.

Authors: B.-A. Behrensa, R. Kawallab, B. Awiszusc, A. Bouguechaa, M. Ullmannb, M. Grafc

Article published in: Procedia Engineering, September 2017

Download

 

Identification of tribological mechanisms of shot peened steel surfaces for an application in sheet-bulk metal forming

An increasing demand on highly-integrated high-strength lightweight components, especially in the automotive industry, motivates the need for the development of the new class of manufacturing processes sheet-bulk metal forming (SBMF). The use of SBMF for producing those components leads to many challenges. This is due to the fact that the processes are characterized by a successive and/or simultaneous occurrence of different load conditions regarding stress and
strain states.These conditions influence the material flow and thus the geometrical accuracy of the produced parts. To improve the product quality, methods to control the material flow are needed. 

Authors: Maria Löfflera, Ulf Engela, Kolja Andreasa, Marion Merkleina

Article published in: 13th International Conference on Shot Peening, September 2017

Download

 

Welding Thermal Simulation and Metallurgical Characteristics Analysis in WAAM for 5CrNiMo Hot Forging Die Remanufacturing

In order to analyze the performance of wire and arc additive manufacturing for 5CrNiMo hot forging die remanufacturing, the FEM numerical model of multi-layer and multi-pass welding was built. The thermal distribution and cycle in weld beads were investigated, and the simulation results conformed to the experimental measurements well. Then the microstructure and microhardness in different layers and the heat affected zone in the substrate was analyzed after the experiment of weld overlaying, and the influence of the thermal cycle on the metallurgical characteristics was also discussed. 

Authors: Zeqi Hua, Xunpeng Qina, Tan Shaoa,

Article published in: Procedia engineering, September 2017

Download

 

Effect of Hardening Rule for Spring Back Behavior of Forging

back behavior is one of the most important factors on the discrepancy, in not only sheet metal forming but also cold forging processes. Spring back behavior is one of the most important factors on the discrepancy, in not only sheet metal forming but also cold forging process. For cold forging process, it is difficult to observe the change in geometry of forgings before and after release of tools/dies, since the workpiece during forging is covered by tools/dies in most cases.

Authors: Shinobu Naritaa, Kunio Hayakawab, Yoshihiro Kubotab,
Takafumi Haradab, Takeshi Uemoric

Article published in: Procedia engineering, September 2017

Download

 

Resource-efficient development of thermally highly resistant engine components of hybrid metal composites - experiments and numerical analysis

Resource-efficient development of thermally highly resistant engine components of hybrid metal composites - experiments and numerical analysis

Authors: Dirk Landgrebe, Lutz Krüger, Nadine Schubert, Eric Jentsch, Tim Lehnert

Article published in: Procedia Engineering, November 2017 

One remark in our own interest: With the release of Simufact Forming 15 users can simulate inductive heating. 

Download

 

Predicting Material Fracture in Cold Forging

Care should be taken in modeling the cold forging of fasteners through computer simulations. It has been shown that pre-forming operations have significant effect on predicting cracking based on mathematical damage models. Pre-forming operations such as wire drawing and bar cropping should be included in the simulation model for highest accuracy and best predictive results. 

Authors: Cenk Kilicasalan - Norm Civata San. ve Tic A.S. (Norm Fasteners Co.) Turkey

Article published in: FORGE magazine, December 2017

Download

 

Experimental and Numerical Investigation of an Overheated Aluminum Droplet Wetting a Zinc-Coated Steel Surface

Wetting steel surfaces with liquid aluminum without the use of flux can be enabled by the presence of a zinc-coating. The mechanisms behind this effect are not yet fully understood. Research results on single aluminum droplets falling on commercial galvanized steel substrates revealed the good wetting capability of zinc coatings independently from the coating type. The final wetting angle and length are apparently linked to the time where zinc is liquefied during its contact with the overheated aluminum melt. 

Authors: Marius Gatzen, Peer Woizeschke, Tim Radel, Claus Thomy and Frank Vollertsen 

Article published in: MDPI, December 2017

Download

 

Development of calibration of rolling round steel № 40 from 150 x 150 mm billets in 320 JSC „SSGPO“ mill

Тhis paper presents results obtained in the course of development of new calibration rolls for rolling round steel № 40 in 320 JSC „SSGPO“ mill. There is an untapped potential of the rolling mill capacity during the production of round barswith a diameter of 40 mm from initial 120 mm × 120 mm billets. The solution of this problem refers to the mill translation to production of round steel with a diameter of 40 mm from initial 150 mm × 150 mm billets.  

Authors: Abdrakhman B. Naizabekov, Bereke S. Mukhametkaliev, Sergey N. Lezhnev,
Evgeniy A. Panin, Evgeniy V. Andreev 

Article published in: Naizabekov, Bereke S. Mukhametkaliev, Sergey N. Le, January 2018

Download

 

Success hinges on AM

 

Simufact's Michael Wohlmuth and Michael Tran describe LightHinge+, a co-engineering project that used the extended possibilities of additive production to develop a lightweight solution with fewer components and simpler assembly. 

Article published in: ams magazine, January-February 2018

Download

 

Residual Stresses: Friend or Foe?

Residual stresses are inherently introduced to forged products during their deformation.
These stresses influence the integrity of load-bearing parts. Their effects depend on their nature
(tensile or compressive), location and magnitude. Tensile residual stresses’ integrity can be very
detrimental, particularly for products used in the as-forged condition. In contrast, compressive
residual stresses can be a lifesaver, if tailored appropriately. Hence, numerical and experimental
methods should be carried out to characterize the residual stresses, and they should be taken into
account for forged products to prevent premature failure and to improve service life.

Authors: M. Burak Toparli, Sezgin Yurtdas¸, Emrah Kılınçdemir, Barıs¸ Tanrıkulu – NORM Group; Izmir, Turkey

Article published in: FORGEmag - April 2018

Download

 

Without Simulation, no way

Simufact is one of the pioneers in the exciting field of simulation for metallic additive manufacturing. Hendrik Schafstall,
General Manager & CTO with the vendor, explains state-of-the-art applications.

Interview with Dr. Hendrik Schaftstall, Managing Director & CTO, simufact engineering gmbh

Published in: d1g1tal AGENDA, 1-2018

 

Download

Preliminary analysis of a rotary comprassion test

The paper addresses the problem of material fracture in cross rolling processes. A new test based on rotary compression for determining limit values of the damage function after the Cockroft-Latham criterion is proposed. A FEM analysis is performed to determine the stress and strain states in a workpiece subjected to this test. The numerical results demonstrate that the axial region of the workpiece is characterized by the presence of alternating tensile and compressive stresses conducive to fracture. The distribution of the Cockroft-Latham integral in the axial region of the workpiece is determined.

Authors: Zbigniew Pater, Patrycja Walczuk, Konrad Lis, Łukasz Wójcik

Article published in: Advances in Science and Technology Research Journal - June 2018

Download

 

Optimization of Selective Laser Melting by Evaluation Method of Multiple Quality Characteristics

Article describes the adoption of the Taguchi method in selective laser melting process of sector of combustion chamber by numerical and natural experiments for achieving minimum temperature deformation. The aim was to produce a quality part with minimum amount of numeric experiments. For the study, the following optimization parameters
(independent factors) were chosen: the laser beam power and velocity; two factors for compensating the effect of the residual thermal stresses: the scale factor of the preliminary correction of the part geometry and the number of additional reinforcing elements. 

Authors: A I Khaimovich, I S Stepanenko and V G Smelov 

Article published in: IOP Publishing - September 2018

Download

 

Additively Manufactured Lightweight Hood Hinge

Edag, voestalpine and simufact have developed the additively manufactured LightHinge+ engine hood hinge. The worthwile result: As well as being half the weight of conventional designs, it also incorporates a pedestrian protection function. The component can be manufactured without tools, is optimized for warpage and requires only minimum post-processing.

 

Authors: Dr.-Ing. Martin Hillebrecht, Edag Engineering GmbH, Sebastian Flügel, Edag Engineering Gmbh, Dr.-Ing. Eric Klemp, voestalpine Additive Manufacturing Center GmbH and Dr.-Ing. Patrick Mehmert, simufact engineering gmbh

Published in: 120 Years of ATZ 

 

The article is available online via Springer Fachmedien

 

 

Development of SLM quality system for gas turbines engines parts production

 The work represents the approaches for designing the quality system for gas turbines
engines parts additive manufacturing. For gas turbines engines applications, the quality
parameters obtained by the selective laser melting are insufficient and require the subsequent
surface treatment. 

Authors: V V Kokareva, V G Smelov, A V Agapovichev, A V Sotov, V S Sufiiarov, 

Article published in: IOP Publishing - November 2018

Download

 

Investigation on forming–welding process chain for DC04 tube manufacturing using experiment and FEM simulation

A chained forming–welding process is to be investigated and analyzed using experimental verification and numerical simulation in which the material and mechanical properties are fully transferred between processes. The investigated part is in the form of a tube with dimension of 300 mm (l) × 20 mm (OD) × 1.5 mm (t) made of a low carbon steel material DC04 commonly used for
automotive parts and support structure.

Authors: Alexander Bauer, Yupiter H. P. Manurung, Joeran Sprungk, Marcel Graf, Birgit Awiszus, Keval Prajadhiana

Published in: The International Journal of Advanced Manufacturing Technology - October 2018

 

Download

 

Simulation secures and expands sheet metal forming

Simulation provides a detailed view of manufacturing processes. The software takes into account the relevant physical aspects and provides application-focused functions. 

Authors: Dr. Hendrik Schafstall, Director & CEO simufact engineering, Dr. Ingo Naubauer, Director Research & Innovation, simufact engineering

Published in: ETMM Magazine - January 2019

Download

Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation

A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations.

Authors: Julian Frei, Max Biegler, Michael Rethmeier, Christoph Böhne and Gerson Meschut

Published in: Science and Technology of Welding and Joining, February 2019

Purchase article

Development of an Additive Manufacturing Quality System for Gas Turbine Engine Part Production

Selective laser melting (SLM) is a powder bed fusion additive manufacturing (AM) process which occurs at a high metal melting temperature. High local temperature gradients and brief cooling effects can cause residual stresses
and part deformation during 3d printing, the consequences of which can be additional surface treatment and reduced
productivity for the process. To understand how to control the formation of AM residual stresses and part form deformation, a reliable method to investigate influences between technological parameters and quality behaviours is required. There are basic physical mechanisms of the selective laser melting process that can lead to part distortion and cracking: high temperature gradients, high viscosity and surface tension of the molten powder zone, un-melted powder and oxidized particles.

Authors: A.I Khaimovich, V.V. Kokareva, V.G. Smelov, A.V. Agapovichev, A.V. Sotov Department of Aircrafts Engines’ Construction Technologies, Samara National Research University

Published in: MSC Engineering Reality Magazine, Volume IX - Summer 2019

Download article

Optimize the Product Part, Not Just the Geometry - A Real World End2End Additive Manufacturing Solution

With the continuing rapid adoption and development of additive manufacturing techniques and technologies in multiple industries led by aerospace, defense, medical and automotive, many benefits can be obtained in companies. This includes the huge potential for lightweighting, small production runs with less material waste, significant energy cost savings, and the possibility to produce functional, high performance parts that simply can’t be subtractively manufactured, cast or formed. One of the challenges is a full automation and to minimize the physical try-outs. This can only be achieved with a full digital
transformation and a fully connected workflow.

Authors: Dr. Hendrik Schafstall, Managing Director and CEO Simufact Engineering GmbH

Published in: MSC Engineering Reality Magazine, Volume IX - Summer 2019

Download article

Determination of the critical socket depths of 10.9 and 8.8 grade M8 bolts with hexagonal socket form
In this work, the effect of various socket depths of fasteners was investigated for the sake of weight reduction. M8x1.25 × 50 Full Thread (FT) bolts with 10.9 and 8.8 grade were examined in detail. The finite element simulations were performed by using SIMUFACT Forming Software. Empirical studies including fatigue and torque-tension experiments were conducted with the bolts having various socket depths. In addition, the effect of washer as used in most assembly conditions was investigated. One of the analytical methods used in the literature was also employed to compare the results obtained by the numerical and experimental methods. Based on the results obtained in this study, critical socket depths leading to the shift of failures from the thread region to head region were obtained for the investigated M8x1.25 × 50 FT bolts with 10.9 and 8.8 grades. The experimental results were compared with the analytical model and found that the analytical model underestimated the critical socket depths for both 10.9 and 8.8 grade bolts.
 
Authors: Baris Tannkulu, M. Burak Toparli, Emrah Kilincdemir, Sezgin Yurdas, Umut Ince

Published in: Engineering Failure Analysis, Volume 104, October 2019, p. 586 - 577

Purchase article via Science-Direct

Numerical Modeling Coupled Design Studios To Increase Forging Die & Tool Lofe Of M8x21.5 Hexagonal Headed Specal Bolts
In this study, the effects of die and tool design on life of cold forging dies were investigated. Simufact.forming was used as finite element modeling software to examine material flow and the level of stresses generated on the dies during cold forging of M8x21.5 special fasteners. According to the initial simulations, it was seen that the maximum principal stresses acting in the fourth forging stage were above the die material static limit. After employing different tool designs, a significant decrease in maximum principal stresses from about 900 MPa to 400 MPa was achieved. The designed tools and dies in this study were used in serial production up to number of 260.000 bolts. The production was completed without any failure of dies and tools which was predicted by the simulations.
 
Authors: Sezgin Yurdas, M. Burak Toparli, Baris Tannkulu, Tayfur Yavuzbarut and Cenk Kilicasalan

Published in: The International Conference on Materials Science, Mechanical and Automotive Engineering and Technology, At Turkey, June 2019, available on Research Gate

Download article

Simulation of Additive Manufacturing Processes for Metals: Amazing Experiences
The processes for manufacturing parts using additive manufacturing have meanwhile conquered a firm place in both plastics and metal sectors. The processes usually work with a string heat input, which can lead to distortion or shrinkage of the components. In order to calculate and compensate these undesired effects in advance, the finite element method is ideally suited, since multi physical simulations are now part of the standard equipment of software tools. Some experts therefore assume that the possibilities of simulation represent the next level of automation of additive manufacturing processes. 
 
In the present paper, the possibilities have therefore been tested using a leading commercial tool. On different 3D metal parts, thermomechanical analysis as well as purely mechanical analysis using a calibration part and the method of inherent strains were worked over. For thermomechanical analysis, approximately 60 different input values had to be determined, queried, calculated or simply guessed. In the purely mechanical analysis, only one real calibration part had to be created on the same printing machine with the same material and a deformation vector had to be measured during cutting. 
 
Authors: Prof. Dr. Hanspeter Gysin, B.SC. Roman Gantenbein - HSR University of Applied Sciences Rapperswil, Switerzland)

Published/Presented at: NAFEMS World Congress 2019, Québec City, Canada, 17-20th June 2019

Download article

Measuring cost
Today, OEMs are facing increasing pressure for cost reduction. Car manufacturers and component suppliers need to identify the right set screws to reduce their costs efficiently. Looking at the whole product development process with the phases of design, engineering, prototyping and production, there are several good opportunities to achieve this. The
appropriate usage of simulation tools together with 3D quality data management will help provide high quality products while staying at a moderate cost level. This solution can be applied to any complex production that consists of manufacturing and assembly. A very good example is the body-in-white assembly.
 
Authors: Dr. Ingo Hahn; simufact engineering gmbh, Dr. Hendrik Schafstall; simufact engineering gmbh

Published: ams, january-march 2020

Download article

Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing
Components distort during directed energy deposition (DED) additive manufacturing (AM) due to the repeated localised heating. Changing the geometry in such a way that distortion causes it to assume the desired shape – a technique called distortion-compensation – is a promising method to reach geometrically accurate parts. Transient numerical simulation can be used to generate the compensated geometries and severely reduce the amount of necessary experimental trials. This publication demonstrates the simulation-based generation of a distortion-compensated DED build for an industrial-scale component. A transient thermo-mechanical approach is extended for large parts and the accuracy is demonstrated against 3d-scans. The calculated distortions are inverted to derive the compensated geometry and the distortions after a single compensation iteration are reduced by over 65%.
 
Authors: Max Biegler Fraunhofer IPK, Dr. Beatrix Elsner Simufact, part of Hexagons's Manufacturing Intelligence divison, Dr. benjamin Graf Fraunhofer IPK, Michael Rethmeier

Published: Science and Technology of Welding and Joining

Access article

Prediction of Preheating Temperatures for S690QL High Strength Steel Using FEM-Simulation for High Power Laser Welding
This study investigates a method for predicting the effect of preheating temperatures on the resulting hardness for high power laser welding of high strength steel. An FEM model is introduced containing a hardness calculation based on an existing model. Moreover, the hardness values of experimental results have been measured in order to show the performance of the model. The hardness calculation requires the chemical composition and the t8/5-time at the point of measurement. It is claimed that a calibration of the melt pool width and depth at room temperature only is enough to get reasonable results from the FEM-model for higher preheating temperatures.
 
Authors: Dirk Landgrebe, Lutz Krüger, Nadine Schubert, Eric Jentsch, Tim Lehnert

Article puplished in: Procedia Engineering, November 2017

Access article

Overcoming distortion in new DED additive manufacturing processes with simulation
Directed energy deposition (DED) is a powerful additive manufacturing technique that combines a high degree of freedom in design with relatively high deposition rates that can increase throughput. DED structures are created by repeatedly depositing weld beads from powder or wire feedstock, which also makes it an attractive technique for hybrid manufacturing because features can be added to a base component. However, the numerous heating and cooling cycles involved in the deposition process result in a complex thermal history that can entail distort the entire component.
 
Authors: By Dr.-Ing. Beatrix Elsner, Dr. Frank Silze (OSCAR PLT) and Dr. Axel Marquardt (TU Dresden)

Article puplished in: TCT Magazine June 9 , 2020

Access article

Simufact Additive: Accelerating the metal Binder Jetting workflow with sintering simulation
The ability to 'design out' distortion during sintering is seen as key to enabling the faster commercialisation of metal Binder Jetting (BJT). The Simufact Additive software platform, now on the third release of its BJT sintering module, is able to accurately simulate the sintering process, predicting shrinkage, slumping and friction-related distortion, either with or without 'live' and 'ceramic' setters,
resulting in a downloadable 'compensated' component geometry to be fed directly to the AM machine. In this article, Jeff Robertson explores through case studies how The ExOne Company has been using the software in its AM adoption
and R&D centres to optimise customer parts for sintering.
 
Author: Jeff Robertson, Director of Business Development, Americas, Simufact and FTI, part of Hexagon

Article puplished in: Metal AM Autumn Editition 2021

Access article

Numerical simulation of shrinkage and deformation during sintering in metal binder jetting
Sintering, as a post-processing step in metal binder jetting (MBJ), often results in distortion. Numerical simulations can predict sintering distortion and minimize costly trial-and-error experiments. The present paper implements a numerical approach based on a phenomenological model of sintering to capture the creep deformation during free sintering. To qualify and calibrate the material model for MBJ, metallographic studies, dilatometry experiments, and viscosity measurements are carried out instead of empirical models for viscosity and sinter stress.
 
Authors: Dr. Kiranmayi Abburi Venkata, simufact, part of Hexagon; Shahrooz Sadeghi Borujeni, Volkswagen AG; Anwar Shad; Volkswagen AG; Nico Günther, Volkswagen AG; Prof. Dr. Vasily Ploshikhin, University of Bremen

Article puplished in: Materials & Design, Volume 2016, April 2022

Access article

Accurate numerical prediction of thermo-mechanical behaviour and phase fractions in SLM components of advanced high strength steels for automotive applications
Conventional crash absorber in automotive applications, so called crash boxes are fabricated via deep
drawn sheet metal resulting in significant lead times and costs. Laser Powder Bed Fusion processes,
like Selective Laser Melting (SLM) offer an attractive alternative for the fabrication of crash parts while
eliminating any need for costly forming dies and reducing the lead times, provided required material
properties are achieved.
 
Authors: Dr. Kiranmayi Abburi Venkata, simufact, part of Hexagon; Rohith Uppaluri, simufact, part of Hexagon; Bernd Schob, Chemnitz University of Technology; Camilo Zopp, Chemnitz University of Technology; Richard Kordass, EDAG Engineering GmbH;
Jan Bohlen, EDAG Engineering GmbH; Matthias Höfemann,Salzgitter Mannesmann Forschung GmbH; Marcin Kasprowicz, Wadim Plast Sp. z o.o.; Andrzej Pawlak, Wroclaw University of Science and Technology; Edward Chlebus, Wroclaw University of Science and Technology

Article puplished in: Materials & Design, Volume 2016, April 2022

Access article

Your Contact

Persönliche Daten

How we process your personal data.

 

* Mandatory fields

Please add 7 and 4.
 
Claudia Plutschinski

Your Contact

Claudia Plutschinski
Marketing & Customer Services
Phone: +49 (0)40 790 128 161
Cookies
We use cookies to enable you to make the best possible use of our website. Cookies necessary for operating the website are set. You can also allow cookies for statistics purposes. You can change cookie settings or directly allow all cookies.
Edit cookies